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SELECTED FORMULAE

Coordinate transformations

Cylindrical 7→ rectangular (x, y, z) = (r cosφ, r sinφ, z)

Spherical 7→ rectangular (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ)

Differential operators

Gradient ∇ f =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ

Divergence ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

(Rectangular)

∇ · F =
1

r

∂

∂r
(r Fr) +

1

r

∂Fφ
∂φ

+
∂Fz
∂z

(Cylindrical)

Curl ∇× F =

∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣

Line integral

Path `

∫

`

F · dl =

∫ 1

0

F(l(s)) · dl(s)
ds

ds

Surface integrals

Rectangular surface (z = 0 plane)

∫∫

A

F · dA =

∫ b

a

∫ d

c

F(x, y, 0) · (dx dy ẑ)

Circular surface (z = 0 plane)

∫∫

A

F · dA =

∫ R

0

∫ 2π

0

F(r, φ, 0) · (r dφ dr ẑ)

Cylindrical surface (no end faces)

∫∫

A

F · dA =

∫ L

0

∫ 2π

0

F(R, φ, z) · (Rdφ dz r̂)

Spherical surface

∫∫

A

F · dA =

∫ 2π

0

∫ π

0

F(R, φ, θ) ·
(
R2 sin θ dθ dφ r̂

)

Volume integrals

Cube

∫∫∫

v

ρ dv =

∫ a

0

∫ a

0

∫ a

0

ρ(x, y, z) dx dy dz

Cylinder

∫∫∫

v

ρ dv =

∫ L

0

∫ R

0

∫ 2π

0

ρ(r, φ, z) r dφ dr dz

Sphere

∫∫∫

v

ρ dv =

∫ R

0

∫ 2π

0

∫ π

0

ρ(r, φ, θ) r2 sin θ dθ dφ dr

(OVER)
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Flux densities, fields and forces

Electric flux density and field D = εE

Magnetic flux density and field B = µH

Electric force and field F = qE

Magnetic force and flux density F = q v ×B

Maxwell’s Equations

Gauss (Electric) ∇ ·D = ρ

∫∫

A

D · dA =

∫∫∫

vol(A)

ρ dv

Gauss (Magnetic) ∇ ·B = 0

∫∫

A

B · dA = 0

Faraday ∇× E = −∂B
∂t

∮

`(A)

E · dl = − ∂

∂t

∫∫

A

B · dA

Ampere ∇×H = J +
∂D

∂t

∮

`(A)

H · dl =

∫∫

A

J · dA +
∂

∂t

∫∫

A

D · dA

Conservation Laws

Energy E = −∇V V = −
∫

`

E · dl

Charge ∇ · J = −∂ρ
∂t

∫∫

area(v)

J · dA = − ∂

∂t

∫∫∫

v

ρ dv

Conductors

Current i =

∫∫

A

J · dA

Voltage v = −
∫

`

E · dl

Ohm’s Law J = σE v = R i

Skin depth δ =

√
2

ω µσ

Permittivity (free space) ε◦ = 8.85× 10−12 F m−1

Permeability (free-space) µ◦ = 4π × 10−7 H m−1

Conductivity (copper) σ = 5.8× 107 (Ω m)−1

Permittivity (copper) ε = ε◦ = 8.85× 10−12 F m−1

Permeability (copper) µ = µ◦ = 4π × 10−7 H m−1

Charge redistribution time TCR =
ε

σ

(OVER)
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Conductors (continued)

Resistance R = −
∫
`
E · dl∫∫

A
σE · dA

R =

∫ L

0

dx

σ(x)A(x)

R =
L

σ A

Capacitance (linear) C = −ε
∫∫∫

v
∇ · E dv∫

`
E · dl

C =
εA

d

Divergence in cylindrical coordinates

∇ · F =
1

r

∂

∂r
(r Fr) +

1

r

∂Fφ
∂φ

+
∂Fz
∂z

A possibly useful formula

1

b2 − z2 =
1

2b

[
1

b− z +
1

b+ z

]

(OVER)
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Formulas and Identities 
Tangent and Cotangent Identities 

sin costan cot
cos sin

θ θ
θ θ

θ θ
= =  

Reciprocal Identities 
1 1csc sin

sin csc
1 1sec cos

cos sec
1 1cot tan

tan cot

θ θ
θ θ

θ θ
θ θ

θ θ
θ θ

= =

= =

= =

 

Pythagorean Identities 
2 2

2 2

2 2

sin cos 1
tan 1 sec
1 cot csc

θ θ

θ θ

θ θ

+ =

+ =

+ =

 

Even/Odd Formulas 
( ) ( )
( ) ( )
( ) ( )

sin sin csc csc

cos cos sec sec

tan tan cot cot

θ θ θ θ

θ θ θ θ

θ θ θ θ

− = − − = −

− = − =

− = − − = −

 

Periodic Formulas 
If n is an integer. 

( ) ( )
( ) ( )
( ) ( )

sin 2 sin csc 2 csc

cos 2 cos sec 2 sec

tan tan cot cot

n n

n n

n n

θ π θ θ π θ

θ π θ θ π θ

θ π θ θ π θ

+ = + =

+ = + =

+ = + =
Double Angle Formulas 

( )
( )

( )

2 2

2

2

2

sin 2 2sin cos

cos 2 cos sin

2cos 1
1 2sin

2 tantan 2
1 tan

θ θ θ

θ θ θ

θ

θ
θ

θ
θ

=

= −

= −

= −

=
−

 

Degrees to Radians Formulas 
If x is an angle in degrees and t is an 
angle in radians then 

180and  
180 180

t x tt x
x

π π
π

= ⇒ = =

Half Angle Formulas       (alternate form) 

( )( )

( )( )
( )
( )

2

2

2

1 cos 1sin sin 1 cos 2
2 2 2

1 cos 1cos cos 1 cos 2
2 2 2

1 cos 21 costan tan
2 1 cos 1 cos 2

θ θ
θ θ

θ θ
θ θ

θθ θ
θ

θ θ

−
= ± = −

+
= ± = +

−−
= ± =

+ +
Sum and Difference Formulas 

( )
( )

( )

sin sin cos cos sin

cos cos cos sin sin
tan tantan

1 tan tan

α β α β α β

α β α β α β

α β
α β

α β

± = ±

± =

±
± =

∓

∓

 

Product to Sum Formulas 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1sin sin cos cos
2
1cos cos cos cos
2
1sin cos sin sin
2
1cos sin sin sin
2

α β α β α β

α β α β α β

α β α β α β

α β α β α β

= − − +  

= − + +  

= + + −  

= + − −  

Sum to Product Formulas 

sin sin 2sin cos
2 2

sin sin 2cos sin
2 2

cos cos 2cos cos
2 2

cos cos 2sin sin
2 2

α β α β
α β

α β α β
α β

α β α β
α β

α β α β
α β

+ −   + =    
   

+ −   − =    
   

+ −   + =    
   

+ −   − = −    
   

 Cofunction Formulas 

sin cos cos sin
2 2

csc sec sec csc
2 2

tan cot cot tan
2 2

π π
θ θ θ θ

π π
θ θ θ θ

π π
θ θ θ θ

   − = − =   
   
   − = − =   
   
   − = − =   
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Math Formulas: Hyperbolic functions

Definitions of hyperbolic functions

1. sinhx =
ex − e−x

2

2. coshx =
ex + e−x

2

3. tanhx =
ex − e−x

ex + e−x
=

sinhx

coshx

4. cschx =
2

ex − e−x
=

1

sinhx

5. sechx =
2

ex + e−x
=

1

coshx

6. coth x =
ex + e−x

ex − e−x
=

coshx

sinhx

Derivatives

7.
d

dx
sinhx = coshx

8.
d

dx
coshx = sinhx

9.
d

dx
tanhx = sech2x

10.
d

dx
cschx = −cschx · cothx

11.
d

dx
sechx = −sechx · tanhx

12.
d

dx
cothx = −csch2x

Hyperbolic identities

13. cosh2 x− sinh2 x = 1

14. tanh2 x+ sech2x = 1

15. coth2 x− csch2x = 1

16. sinh(x± y) = sinhx · cosh y ± coshx · sinh y

17. cosh(x± y) = coshx · cosh y ± sinhx · sinh y

18. sinh(2 · x) = 2 · sinhx · coshx

19. cosh(2 · x) = cosh2 x+ sinh2 x

1
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20. sinh2 x =
−1 + cosh 2x

2

21. cosh2 x =
1 + cosh 2x

2

Inverse Hyperbolic functions

22. sinh−1 x = ln
(
x+

√
x2 + 1

)
, x ∈ (−∞,∞)

23. cosh−1 x = ln
(
x+

√
x2 − 1

)
, x ∈ [1,∞)

24. tanh−1 x =
1

2
ln

(
1 + x

1− x

)
, x ∈ (−1, 1)

25. coth−1 x =
1

2
ln

(
x+ 1

x− 1

)
, x ∈ (−∞,−1) ∪ (1,∞)

26. sech−1x = ln

(
1 +
√
1− x2

x

)
, x ∈ (0, 1]

27. csch−1x = ln

(
1

x
+

√
1− x2

|x|

)
, x ∈ (−∞, 0) ∪ (0,∞)

Derivatives of Inverse Hyperbolic functions

28.
d

dx
sinh−1 x =

1√
x2 + 1

29.
d

dx
cosh−1 x =

1√
x2 − 1

30.
d

dx
tanh−1x =

1

1− x2

31.
d

dx
csch−1x = − 1

|x|
√
1 + x2

32.
d

dx
sech−1x = − 1

x
√
1− x2

33.
d

dx
coth−1 x =

1

1− x2

2



Formulas from Calculus

Derivatives
d
dx [x

n] = nxn−1 d
dx [e

x] = ex d
dx [sinx] = cosx

d
dx [c] = 0 d

dx [b
x] = bx ln b d

dx [cosx] = − sinx

d
dx [x] = 1 d

dx [lnx] = 1
x

d
dx [tanx] = sec2 x

d
dx

[
1
x

]
= − 1

x2
d
dx [logb x] = 1

x ln b
d
dx [secx] = tanx secx

d
dx

[
1
x2

]
= − 2

x3
d
dx [sinhx] = coshx d

dx [arcsinx] = 1√
1−x2

d
dx [
√
x] = 1

2
√
x

d
dx [coshx] = sinhx d

dx [arctanx] = 1
1+x2

d
dx

[
1√
x

]
= − 1

2x
√
x

d
dx [tanhx] = sech 2x

d
dx [arcsinh x] = 1√

1+x2

d
dx [arctanh x] = 1

1−x2

Product Rule: d
dx [f(x)g(x)] = f ′(x)g(x) + f(x)g′(x)

Quotient Rule:
d

dx

[
f(x)

g(x)

]
=

g(x)f ′(x)− f(x)g′(x)
g(x)2

Chain Rule:
d

dx
[f(g(x))] = f ′(g(x))g′(x) or

dy

dx
=

dy

du

du

dx

Special Cases

d

dx
[f(x)n] = nf(x)n−1f ′(x)

d

dx

[
1

g(x)

]
=
−g′(x)
g(x)2

d

dx
[ln |f(x)|] =

f ′(x)
f(x)

d

dx

[
ef(x)

]
= f ′(x)ef(x)



Integrals

∫
xn dx = 1

n+1x
n+1 + C

∫
1

x
dx = ln |x|+ C

∫
c dx = cx+ C

∫
x dx = 1

2x
2 + C

∫
x2 dx = 1

3x
3 + C

∫
1

x2
dx = −1

x
+ C

∫ √
x dx = 2

3x
√
x+ C

∫
1√
x

dx = 2
√
x+ C

∫
1

1 + x2
dx = arctanx+ C

∫
1√

1− x2
dx = arcsinx+ C

∫
lnx dx = x lnx − x+ C

∫
xn lnx dx = xn+1

n+1 lnx − xn+1

(n+1)2
+ C

∫
ex dx = ex + C

∫
bx dx = 1

ln bb
x

∫
sinhx dx = coshx+ C

∫
coshx dx = sinhx+ C

∫
sinx dx = − cosx+ C

∫
cosx dx = sinx+ C

∫
tanx dx = ln | secx|+ C

∫
secx dx = ln | tanx+ secx|+ C

∫
sin2 x dx = 1

2(x− sinx cosx) + C
∫

cos2 x dx = 1
2(x+ sinx cosx) + C

∫
tan2 x dx = tanx − x+ C

∫
sec2 x dx = tanx+ C

Substitution

∫
f(g(x))g′(x) dx =

∫
f(u) du = F (u) + C = F (g(x)) + C

∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du

Special cases

∫
f ′(x)
f(x)

dx = ln |f(x)|+ C

∫
ef(x)f ′(x) dx = ef(x) + C

By parts

∫
u dv = uv −

∫
v du

∫ b

a
u dv = uv]ba −

∫ b

a
v du

or

∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x) dx

∫ b

a
f(x)g′(x)dx = f(x)g(x)]ba −

∫ b

a
g(x)f ′(x) dx



Electrical Device Modelling 2016 1 RESISTORS

1 Resistors

J | Current Density

v | Velocity

E | Electric Field

σ | Conductivity

ρ | Resistivity

µ | Permeability

q | Charge per carrier

n | Carrier density

m | Carrier mass

τ | Time between collisions

µq | Mobility (ease with which a charge carrier can drift)

Equation for mobility

µq =
qτ

m

Conductivity (dependent on charge, concentration
and mobility)

σ = qnµq

Essentially R=V/I

R = −
´
l
E · dl˜

A
σE · dA

Volume integration over resistor

R =

ˆ L

0

dx

σ(x)A(x)

Simplified version of volume integration for constant
values

R =
L

σA
=
ρL

A

Current density due to charge motion

J = qnv

Average charge velocity in resistor accounting for
collisions

v = (
qτ

m
)E

Put above two together to get vector form of Ohm’s
Law

J = σE

σ =
q2τn

m

Skin Depth, the effective cross sectional area

δ =

√
2

ωµσ

Resistance of conductor skin

R(δ) =
l

σA(δ)

11 Benjamin Ding



Electrical Device Modelling 2016 2 CONDUCTORS AND INSULATORS

2 Conductors and Insulators

ε | Permittivity

σ | Conductivity

Low frequency behaviour is dominated by σ, high frequency behaviour determined by how long charge
takes to redistribute in the material, which is a material dependent property

TCR =
ε

σ

Charge redistribution bandwidth is the corner frequency between being a conductor and insulator

BCR =
1

2πTCR
=

σ

2πε

f << BCR | Conductor

f >> BCR | Insulator

Skin depth model used when it is significant, large conductivity means large current that generates charge
separation which creates opposing electric field that attenuates the original field

ω << ωCR

δ =

√
2

ωµσ

Charge redistribution model can be derived from the continuity equation

δρ

δt
+
σ

ε
ρ = 0

12 Benjamin Ding
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3 Capacitors and Inductors

Φ | Magnetic Flux

n | Turns per unit length

ρl | Charge per unit length
′h | Wire separation from central axis

a | Wire radius

Definition of Capacitance - charge separation per
volt

C(v) =
dQ(v)

dv

Assuming linearity from the above

C =
ε
˝

v
∇ ·Edv´

l
E · dl

Definition of Inductance

Li = Φ

Self Inductance

L(i) =
dΦ

di

Coil Inductance

L̂ = µn2A

Infinite parallel wire capacitance

Ĉ =
πε

log(ha +
√

(ha )2 − 1)

Two parallel wires

V =
ρl
πε

log(
h

a
+

√
(
h

a
)2 − 1)

L̂ =
µ

π
log(

h− a
a

)

Ĉ =
πε

log(ha )

Wire above plane

L̂ =
µ

2π
log(

2h

a
)

Ĉ =
2πε

log( 2h
a )

Coaxial cable

L̂ =
µ

2π
log(

b

a
)

Ĉ =
2πε

log( ba )

13 Benjamin Ding
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4 Wires

Non-ideal properties

• Signal Distortion

– Ringing response of conductors at high fre-
quencies is due to inherent inductance and
capacitance of wires (skin depth)

– Wires act as a low pass filter

– Affected by resistance, self-inductance and
capacitance

– Mitigated by

∗ Slower rise times, meaning a lower knee
frequency so fknee ¡¡ fring

∗ Shorter wire lengths, shifts the reso-
nant behaviour to higher frequencies

∗ Flattening high frequency impedance
(achieved through zero reflection coef-
ficient)

• EMI

– Electromagnetic radiation caused by quickly
changing currents and voltages through con-
ductors in high-speed digital systems

– Amperes Law broadcast your digital sig-
nal wirelessly by accident

– Caused by mutual inductance and capaci-
tance

– Big problem when there are current loops

∗ Current flowing out a pin, along a wire,
into another device, and back via a
ground plane or wire

∗ The area enclosed by the loop is the
problem

∗ Behave like antennas

– Mitigated by

∗ Increasing rise time

∗ Keep current loops in small area e.g
coax cable

∗ Shielding

• Cross Talk

– Induced voltages and currents due to EMI,
causes noise

– Faradays Law receive digital signals wire-
lessly by accident

– Caused by mutual inductance and capaci-
tance

– Increased by a faster rise time, both in in-
ductive and capacitive cross-talk

– Mitigated in same way as EMI

Consequences

• Ground bounce

– Connection between internal and system
ground is inductive, so due to L = di

dt a
large change in current will change ground
voltage

– Mitigated by

∗ Lower inductance packaging

∗ Larger diameter ground wires

∗ Ground wires closer to ground plane

∗ Edge slowing

∗ Lower voltage family

∗ Separate input group reference

∗ More ground wires

14 Benjamin Ding



Electrical Device Modelling 2016 4 WIRES

h | Separation from center

a | Smaller radius

b | Larger radius

ν | Signal propagation velocity

D | Propagation delay per unit length

tSW | Switching time

Two parallel wires

L̂ =
µ

π
log(

h− a
a

)

Ĉ =
πε

log(ha )

Wire above plane

L̂ =
µ

2π
log(

2h

a
)

Ĉ =
2πε

log( 2h
a )

Coaxial cable

L̂ =
µ

2π
log(

b

a
)

Ĉ =
2πε

log( ba )

Signal propagation velocity

ν =
1√
L̂Ĉ

=
1√
µε

Propagation delay per unit length

D =
1

ν
=
√
L̂Ĉ =

√
µε

Rising edge length

lsw =
tsw
D

4.a Lumped Model

Y | Voltage over inductor

vB | Voltage on receiving system side of capacitance

Lumped model occurs when lSW >> l
Knee frequency characterizes the approximate

bandwidth of digital signals

fKNEE =
1

πtSW
≈ 0.5

tSW

Interconnect resonant frequency, signal will be
distorted as the knee frequency exceeds the ringing

frequency

fRING =
1

2π

√
1

LC
− R2

2L2
≈ 1

2π
√
LC

Inductive Cross Talk

Y

∆V
≈ LM
RAtSW

≈ LMCA
t2SW

Capacitive Cross Talk

vB
∆V

≈ RBCM
tSW

15 Benjamin Ding



Electrical Device Modelling 2016 4 WIRES

4.b Distributed Model

G | Conductivity

ρ | Reflection Coefficient

ZO | Characteristic Impedance

Γ| Attenuation Coefficient

Distributed model occurs when lSW << l, these
types of systems often suffer from signal distortion

Ẑseries = R̂+ sL̂

Ŷshunt = Ĝ+ sĈ

Characteristic impedance is of an infinite length of
wire

ZO =

√
Ẑseries

Ŷshunt

At low frequencies

ZO(jω) =

√
R̂

Ĝ

At high frequencies (also the characteristic
impedance of a lossless line)

ZO(jω) =

√
L̂

Ĉ

Distributed impedance model for a finite length load
terminated wire

dZ(x)

dx
= Ŷshunt[Z(x)]2 − Ẑseries

Z(l) = Zload

Resonant frequency

fring =
1

(4l)D

Reflection Coefficient

ρ(s) =
Zload(s)− ZO(s)

Zload(s) + ZO(s)

Attenuation Coefficient

Γ(s) =
√
Zseries(s)Yshunt(s) = Dlosslesss = s/v

Impedance for a finite length lossless wire

Zwire(s) = ZO(s)(
1 + ρe−2sl/v

1− ρe−2sl/v )

Transfer function for output voltage/input voltage

HAB(s) =
(1 + ρB exp(−sl/ν)

1 + ρB exp(−2sl/ν)

16 Benjamin Ding



Electrical Device Modelling 2016 5 SEMICONDUCTORS

5 Semiconductors

Band-gap model

• Pauli’s exclusion principle means no two iden-
tical particles can occupy the same quantum
state

• Conduction band contains free to move electron

• Valence band contains electrons bound to spe-
cific atoms (immobile)

• Band gap is higher for insulators, lower for con-
ductors

• Extrinsic semiconductors are intrinsic semicon-
ductors with a dopant added

– n-type is with a donor level added below
conduction band that makes it easier for
electrons to jump up (Group V dopant)

– p-type is with an acceptor level added above
the valence band that makes it easier for
holes to move in the valence band (medi-
ated by electrons)

n | Mobile conduction band electrons

NA | Immobile acceptor ions

p | Mobile valence band holes

ND| Immobile donor ions

T | Temperature

α| Recombination proportionality constant

Charge density is given by

ρ = q(p+ND − n−NA)

Electrons and holes are in pairs (dependent on
temperature), so the EHP generation rate is

rgen = ni(T )2

Electrons and holes also recombine in pairs, so the
EHP recombination rate is dependent on

concentration of both particles

rrec = np

Electrons and holes can also be injected in via
diffusion or contact with another conductor,

therefore the mobile electron concentration model is

dn(t)

dt
= α[n2i − n(t)p(t)] + rin(t)

Under equilibrium conditions with no injection

dn(t)

dt
= 0 =

dp(t)

dt

n̄p̄ = n2i

n̄− p̄ = ND −NA
Therefore the concentrations are

n̄ =
1

2
(ND −NA) +

√
1

4
(NA −ND)2 + ni(T )2

For an n-type semiconductor

ND >> n2i , NA = 0

n̄ ≈ ND

p̄ ≈ n2i
ND

For a p-type semiconductor

NA >> n2i , ND = 0

p̄ ≈ NA

n̄ ≈ n2i
NA

17 Benjamin Ding
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5.a Currents in semiconductors

Lp | Diffusion length for holes

Ln | Diffusion length for electrons

Dp | Diffusion coeffient for holes

Dn | Diffusion coefficient for electrons

∆p | Hole perturbation at injection

∆n | Electron perturbation at injection

Current density in the semiconductor is due to drift
and diffusion

Jn = qnµnE + qDn∇n

Jp = qnµpE + qDp∇p
J = Jn + Jp

Where diffusion coefficients are

Dp =
kT

q
µp

Dn =
kT

q
µn

Recombination lifetime

τr =
1

α(n̄+ p̄)

For p-type and n-type respectively, due to dominant
carriers, the recombination rate is

τr ≈ τp =
1

αp̄

τr ≈ τn =
1

αn̄

If space charge neutrality is assumed, a perturbation
in one carrier will instantly result in a perturbation

in the other carrier, this is due to the ’instant’
charge redistribution time compared to

recombination, therefore

ρ = q(p+ND − n−NA) (from before)

p(t) = n(t) +NA −ND
Define perturbations in the carriers as

δn(t, x) = n(t, x)− n̄

δp(t, x) = p(t, x)− p̄

Yields a pair of continuity equations

1

q
∇ · Jp = −dδp

dt
− δp

τp

−1

q
∇ · Jn = −dδn

dt
− δn

τn

For the special case when there is no drift current,
and all current is due to carrier diffusion, the
diffusion current density due to electrons is

Jn = qDn∇n

The diffusion equations for electrons and holes are

dδn

dt
= Dn∇2(δn)− δn

τn

dδp

dt
= Dp∇2(δp)− δp

τp

Define the diffusion length of carriers as

Lp =
√
Dpτp

Ln =
√
Dnτn

By solving with boundary conditions the excess
carrier concentrations δp, δn can be found

δp(0) = ∆p

δp(∞) = 0

δp(x) = ∆pexp(−x/Lp)
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The total current at any point flowing through the
device is due to hole injection at x = 0, where

electron current is zero

I = Ip(0) = (
qADp

Lp
∆p)

The electron current must pick up as hole current
decays, the individual currents are

In(x) = I[1− exp(−x/Lp)]

Ip(x) = I exp(−x/Lp)
I = In + Ip

5.b Junctions

• Carrier gradients between the two semiconduc-
tors leads to diffusion between the two

• Electrons diffuse from n to p

• Holes diffuse from p to n

• Mobile charge is depleted in central ’depletion
region’

• Depletion approximation assumes that the en-
tire voltage drop is over the depletion region

• Charge separation causes an electric field that
opposes diffusion and creates equilibrium

Dp | Diffusion coeffient for holes

Dn | Diffusion coefficient for electrons

∇p | Gradient of p

∇n | Gradient of n

µp | Hole mobility

µn | Electron mobility

p | Mobile hole concentration

n | Mobile electron concentration

k | Boltzmann’s constant

Lp | Diffusion length for holes

Ln | Diffusion length for electrons

∆p | Hole perturbation at injection

∆n | Electron perturbation at injection

At equilibrium, Jn = Jp = 0

0 = qnµnE + qDn∇n

0 = qnµpE + qDp∇p
Therefore the electric field at equilibrium is

E =
Dp

µp
(
1

p
∇p)

The ”Einstein relation”

Dp

µp
=
kT

q

Integrate over a path through this electric field with
initial conditions of the injected carrier
concentrations to find contact potential

VO =
Dp

µp
log(

pp
pn

) =
kT

q
log(

pp
pn

) ≈ kT

q
log(

NAND
n2i

)

With an applied voltage V

VO − V =
Dp

µp
log(

pVp
pVn

)

Solving for the new carrier concentrations

pVn
pVp

pp
pn

= exp(
qV

kT
)

pVp ≈ pp
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pVn ≈ pn exp(
qV

kT
)

nVp ≈ np exp(
qV

kT
)

Applying this to solve for the injected carrier
distribution

∆pVn = pn(exp(
qV

kT
)− 1)

∆nVp = np(exp(
qV

kT
)− 1)

Integrate to find the diffusion currents due to
injected hole/electron distributions in n/p-type

materials

Ip(x) = (
qADp

Lp
)∆pVn exp(−x− xn

Lp
), x ≥ xn

In(x) = (
qADn

Ln
)∆nVp exp(−x+ xp

Ln
), x ≥ xn

Shockley Diode Equation can be obtained by
summing the two currents

I = IO[exp(
qV

kT
)− 1]

The saturation current is

IO = qA(
Dppn
Lp

+
Dnnp
Ln

)

Forward bias (diffusion dominates)

V >> 0

I ≈ IO exp(
qV

kT
)

Reverse bias (drift dominates)

V << 0

I ≈ −IO
Conductivity of neutral regions can be used to

determine if negligible voltage drop assumption is
valid

σp = q(µpp̄p + µnn̄p) ≈ qµpp̄p

σn = q(µpp̄n + µnn̄n) ≈ qµnn̄n

General Assumptions

• Electric field is confined to the junction and
there is no electric field in neutral regions

• One dimensional device

5.c Junction Dynamics

There are two charge storage mechanism in junctions,
and therefore two capacitances

• Depletion region capacitance

• Diffusion capacitance

Dp | Diffusion coeffient for holes

pn | Equilibrium minority carrier concentration (holes)

k | Boltzmann’s constant

Lp | Diffusion length for holes

τp | Recombination lifetime (holes)
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Depletion capacitance

q(t) = Qdepl(v(t))

Cdepl(v) =
dQdepl
dv

Cdepl(V ) = εA

√
q

2ε(VO − V ) NDNA

ND+NA

Diffusion capacitance (two expressions for mobile
holes and mobile electrons)

q(t) = Qdiff (v(t))

Cdiff (v) =
dQdiff
dv

Cdepl(V ) =
q2

kT
ALppn exp(

qV

kT
)

For a long p+n junction diode, we can assume
junction operation is dominated by hole injection,
and that all recombination happens before the end

of the n-type material.
The total charge due to injected holes on the n-type

region is:

Qp(t) =

ˆ X

xn

qAδpn(t, x)dx

Using this, the charge control model for both
forward and reverse biased junctions can be derived

i(t) =
dQ(t)

dt
+
Q(t)

τ

The charge storage delay for p+ − n and p− n+
respectively

tCSD = τpn log(1 +
If
Ir

)

tCSD = τnp log(1 +
If
Ir

)

The charge control model can be applied for forward
or reverse biased junctions.

• In forward bias, the charge is due to carrier in-
jection in neutral regions either side of the de-
pletion range. Separate models hold for both
electrons and holes.

• In reverse bias, the charge is due to the ”uncov-
ered” ions in the depletion region

• Derivative term implies that changes in stored
charge lag behind changes in current

• When the diode is ”turned off”

– Charge storage delay

∗ The applied voltage switches sign

∗ The excess of injected holes decays

∗ Diode voltage drops from contact po-
tential down to zero

– Carrier depletion

∗ Diode enters reverse bias

∗ Depletion region expands

∗ Diode voltage settles at -E

• For ”turn on” the reverse

• Assumptions

– n-type region is long X >> Lp

– p-type region is heavily doped compared
with n-type region pn >> np

– Half-period is much longer than recombi-
nation lifetime T >> τp

– Forward bias junction voltage is limited by
contact potential v(t) ≤ VO

– Contact potential is much smaller than mag-
nitude of applied voltage VO << E

– Reverse bias saturation is very small IO ≈
0
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6 Bipolar Junction Transistors

Applied Voltages B-E junction bias B-C junction bias Mode
E < B < C Forward Reverse Forward-active
E < B > C Forward Forward Saturation
E > B < C Reverse Reverse Cut-off
E > B > C Reverse Forward Reverse-active

• Forward Active

1. Carrier injection - forward biased BE junction

– Injection of minority electrons into the p-type base region

– Injection of minority holes into the n-type emitter region

2. Carrier diffusion - base transport

– Diffusion of injected base electrons towards the collector

– Recombination of some injected electrons with majority holes

– Diffusion of remainder into the BC junction depletion region

3. Carrier Drift - BC depletion region

– Drift of minority electrons from base to collector

– Conventional current flows into the collector

– Large current gain due to minority electron current dominating BE current (BE junction is pn+)

– Collector current smaller than emitter current due to recombination across base and emitter hole
current

• Reverse Active

• Saturation

• Cut-off
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β | Current Gain

Ebers-Moll model
Current transfer ratios

αR =
BR

1 + βR

αF =
BF

1 + βF

BE junction current

IF = IES [exp(
qVBE
kT

)− 1]

BC junction current

IR = ICS [exp(
qVBC
kT

)− 1]

Total emitter current

IE = IF − αRIR

Total collector current

IC = αF IF − IR

Total base current

IB = IE − IC

Hybrid-Pi model

Local Gain

ṽO
ṽI
≈ RCβF
RB + rπ

6.a BJT Dynamics

Ebers-Moll and Hybrid-Pi are static models that ig-
nore internal BJT dynamics, a dynamic model ac-
counts for applied terminal voltages and currents that
are time varying.
Steady state diffusion equation for electrons:

• Forward active

– Approximately linear for narrow base widths

– Charge injection is across BE junction only

– Injected charge distribution dominates charge
storage

• Cutoff

– No injected charge

– Charge stored in depletion region dipoles
only

• Reverse active mode

– Carrier injection across BC junction only

– Injected charge dominates charge storage

• Saturation

– Carrier injection across both junctions

– Superposition of forward and reverse ac-
tive moves

– Injected charge dominates charge storage

δn(t, x) = np(t, x)− np

0 = DN
d2δnp(x)

dx2
− δnp(x)

τn

Solve using boundary conditions

δnp(0) = ∆nE = np[exp(
qVBE
kT

)− 1]

δnp(Wb) = ∆nC = −np

Assuming that the p-type base material has relatively
few electrons compared to that injected by the emit-
ter, the excess electron concentration in the base is

δnp(x) = ∆np(
exp(Wb−x

Ln
)− exp(−Wb−x

Ln
)

exp(Wb

Ln
)− exp(−Wb

Ln
)

)

The terminal currents are therefore

IE = qADn
dδnp(x)

dx
|x=0
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IC = qADn
dδnp(x)

dx
|x=0

IB = IE − IC

qF | Charge stored in forward active mode excess carrier distribution

qR | Charge stored in reverse active mode excess carrier distribution

qBE | Charge stored in BE junction depletion region

qBC | Charge stored in BC junction depletion region

τF | Mean minority carrier transit time across base in forward active mode

τR | Mean minority carrier transit time across base in reverse active mode

τBF | Minority carrier lifetime (in base) in forward active mode

τBR | Minority carrier lifetime (in base) in reverse active mode
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